

b. Using Mason's gain formula, find $\frac{X_2(s)}{X_1(s)}$ for the system shown in Fig. Q4 (b). (10 Marks)

Module-3

- 5 a. Obtain an expression for a second order system subjected to unit step response for an under damped system. (08 Marks)
 - b. An unity feed back system with $G(S) = \frac{9}{S^3 + RS^2 + 3KS}$ is conditionally stable. Find K_{mar} and R, if the system oscillates with a frequency of 6 radians/sec. (06 Marks)
 - c. A system is represented by $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 8x$, where y is the output and x is the input. Find (i) Delay time (ii) % M_p (iii) Settling time. (06 Marks)

OR

6 Plot the root locus for the given transfer function $G(s)H(s) = \frac{K}{s(s+2)(s+4)(s+6)}$. Find the range of K and comment on the stability of the system. (20 Marks)

Module-4

7 a. Sketch the polar plot for the system with $G(s)H(s) = \frac{1}{(1+T_1s)(1+T_2s)(1+T_3s)}$. (06 Marks)

b. Sketch the Nyquist plot for the system with $G(s)H(s) = \frac{40}{(s+4)(s^2+2s+2)}$. Comment on the stability of the system. (14 Marks)

OR

8 Sketch the Bode plot for the system with $G(s)H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$. From the plot determine (i) Phase cross over frequency (ii) Gain cross over frequency (iii) Gain margin (iv) Phase margin. Comment on the stability of the system. (20 Marks)

Module-5

- 9 a. What is system compensation? Explain the two types of system compensation. (06 Marks)
 - b. Explain Lead compensation. Enumerate the effects and limitations of lead compensator. (07 Marks)
 - c. Explain Lag compensation. Enumerate the effects and limitations of Lag compensator.

(07 Marks)

17ME73

CENTRAL

OR

- 10 a. Explain the following terms:
 - (i) State variables.
 - (ii) State vector.
 - (iii) State
 - (iv) State space.
 - (v) State tajectory.
 - b. Determine the state controllability and observability of the system by Kalman's test.

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u};$$

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{X}$$

(15 Marks)

(05 Marks)